2,461 research outputs found

    Extending a set-theoretic implementation of Montague Semantics to accommodate n-ary transitive verbs.

    Get PDF
    Natural-language querying of databases remains an important and challenging area. Many approaches have been proposed over many years yet none of them has provided a comprehensive fully-compositional denotational semantics for a large sub-set of natural language, even for querying first-order non-intentional, non-modal, relational databases. One approach, which has made significant progress, is that which is based on Montague Semantics. Various researchers have helped to develop this approach and have demonstrated its viability. However, none have yet shown how to accommodate transitive verbs of arity greater than two. Our thesis is that existing approaches to the implementation of Montague Semantics in modern functional programming languages can be extended to solve this problem. This thesis is proven through the development of a compositional semantics for n-ary transitive verbs (n ≥ 2) and implementation in the Miranda programming environment. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .R69. Source: Masters Abstracts International, Volume: 44-03, page: 1413. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    New science on the Open Science Grid

    Get PDF
    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org

    REED: Chiplet-Based Scalable Hardware Accelerator for Fully Homomorphic Encryption

    Get PDF
    Fully Homomorphic Encryption (FHE) has emerged as a promising technology for processing encrypted data without the need for decryption. Despite its potential, its practical implementation has faced challenges due to substantial computational overhead. To address this issue, we propose the firstfirst chiplet-based FHE accelerator design `REED\u27, which enables scalability and offers high throughput, thereby enhancing homomorphic encryption deployment in real-world scenarios. It incorporates well-known wafer yield issues during fabrication which significantly impacts production costs. In contrast to state-of-the-art approaches, we also address data exchange overhead by proposing a non-blocking inter-chiplet communication strategy. We incorporate novel pipelined Number Theoretic Transform and automorphism techniques, leveraging parallelism and providing high throughput. Experimental results demonstrate that REED 2.5D integrated circuit consumes 177 mm2^2 chip area, 82.5 W average power in 7nm technology, and achieves an impressive speedup of up to 5,982×\times compared to a CPU (24-core 2×\timesIntel X5690), and 2×\times better energy efficiency and 50\% lower development cost than state-of-the-art ASIC accelerator. To evaluate its practical impact, we are the firstfirst to benchmark an encrypted deep neural network training. Overall, this work successfully enhances the practicality and deployability of fully homomorphic encryption in real-world scenarios

    Mode-division-multiplexed 3x112-Gb/s DP-QPSK transmission over 80 km few-mode fiber with inline MM-EDFA and blind DSP

    Get PDF
    We show transmission of a 3x112-Gb/s DP-QPSK mode-division-multiplexed signal up to 80km, with and without multi-mode EDFA, using blind 6x6 MIMO digital signal processing. We show that the OSNR-penalty induced by mode-mixing in the multi-mode EDFA is negligible

    Synthesis, structure, solution behaviour and biological evaluation of oxidovanadium(IV/V) complexes: Substrate specific DMSO assisted methylation of a thiosemicarbazone

    Get PDF
    The synthesis and characterization of an oxidovanadium(IV) [VIVO(L)(acac)] (1) and of two dioxidovanadium(V) [VVO2(L')] (2) and [VVO2(L)] (2a) complexes of the Schiff base formed from the reaction of 4-(p-fluorophenyl) thiosemicarbazone with pyridine-2-aldehyde (HL) is described.The oxidovanadium(IV) species [VIVO(L)(acac)] (1) was synthesized by the reaction of VIVO(acac)2 with the thiosemicarbazone HL in refluxing ethanol. The recrystallization of [VIVO(L)(acac)] (1) in DMF, CH3CN or EtOH gave the same product i.e. the dioxidovanadium(V) complex [VVO2(L)] (2a); however, upon recrystallization of 1 in DMSO a distinct compound [VVO2(L')] (2) was formed, wherein the original ligand L- is transformed to a rearranged one, L’-. In the presence of DMSO the ligand in complex 1 is found to undergo methylation at the carbon centre attached to imine nitrogen (aldimine) and transformed to the corresponding V VO2- species through in situ reaction. The synthesized HL and the metal 2 complexes were characterized by elemental analysis, IR, UV–Vis, NMR and EPR spectroscopy. The molecular structure of [VVO2(L')] (2) was determined by single crystal X–ray crystallography.The methylation of various other ligands and complexes prepared from different vanadium precursors under similar reaction conditions was also attempted and it was confirmed that the imine methylation observed is both ligand and metal precursor specific. Complexes 1 and 2 show in vitro insulin-like activity against insulin responsive L6 myoblast cells, with complex 1 being more potent. In addition, the in vitro cytotoxicity studies of HL, and of complexes 1 and 2 against the MCF–7 and Vero cell lines were also done. The ligand is not cytotoxic and complex 2 is significantly more cytotoxic than 1. DAPI staining experiments indicate that increase in time of incubation as well as increase of concentration of the complexes lead to increase in cell death

    A Collider Signature of the Supersymmetric Golden Region

    Full text link
    Null results of experimental searches for the Higgs boson and the superpartners imply a certain amount of fine-tuning in the electroweak sector of the Minimal Supersymmetric Standard Model (MSSM). The "golden region" in the MSSM parameter space is the region where the experimental constraints are satisfied and the amount of fine-tuning is minimized. In this region, the stop trilinear soft term is large, leading to a significant mass splitting between the two stop mass eigenstates. As a result, the decay of the heavier stop into the lighter stop and a Z boson is kinematically allowed throughout the golden region. We propose that the experiments at the Large Hadron Collider (LHC) can search for this decay through an inclusive signature, Z+2jb+missing Et+X. We evaluate the Standard Model backgrounds for this channel, and identify a set of cuts that would allow detection of the supersymmetric contribution at the LHC for the MSSM parameters typical of the golden region. We also discuss other possible interpretations of a signal for new physics in the Z+2jb+missing Et+X channel, and suggest further measurements that could be used to distinguish among these interpretations.Comment: 23 pages, 5 figures. New in v4: an error fixed in Eq. (13); results unaffecte

    Interaction of [(VO)-O-IV(acac)(2)] with Human Serum Transferrin and Albumin

    Get PDF
    VO(acac)(2)] is a remarkable vanadium compound and has potential as a therapeutic drug. It is important to clarify how it is transported in blood, but the reports addressing its binding to serum proteins have been contradictory. We use several spectroscopic and mass spectrometric techniques (ESI and MALDI-TOF), small-angle X-ray scattering and size exclusion chromatography (SEC) to characterize solutions containing [VO(acac)(2)] and either human serum apotransferrin (apoHTF) or albumin (HSA). DFT and modeling protein calculations are carried out to disclose the type of binding to apoHTF. The measured circular dichroism spectra, SEC and MALDI-TOF data clearly prove that at least two VOacac moieties may bind to apoHTF, most probably forming [(VO)-O-IV(acac)(apoHTF)] complexes with residues of the HTF binding sites. No indication of binding of [VO(acac)(2)] to HSA is obtained. We conclude that (VO)-O-IV-acac species may be transported in blood by transferrin. At very low complex concentrations speciation calculations suggest that [(VO)(apoHTF)] species form.Fundacao para a Ciencia e Tecnologia (FCT), Portugal [ RECI/QEQMED/0330/2012, PTDC/QEQ-MED/1902/2014]FCT [IF/00100/2013, IF/00007/2015]PROTEOMASS Scientific SocietyUCIBIO, Unidade de Ciencias Biomoleculares Aplicadas [UID/Multi/04378/2013]ERDF [POCI-01-0145-FEDER-007728, POCI-01-0145-FEDER-007265]info:eu-repo/semantics/publishedVersio

    Little Higgs Models and Their Phenomenology

    Full text link
    This article reviews the Little Higgs models of electroweak symmetry breaking and their phenomenology. Little Higgs models incorporate a light composite Higgs boson and remain perturbative until a scale of order 10 TeV, as required by precision electroweak data. The collective symmetry breaking mechanism, which forms the basis of Little Higgs models, is introduced. An explicit, fully realistic implementation of this mechanism, the Littlest Higgs model, is then discussed in some detail. Several other implementations, including simple group models and models with T parity, are also reviewed. Precision electroweak constraints on a variety of Little Higgs models are summarized. If a Little Higgs model is realized in nature, the predicted new particles should be observable at the Large Hadron Collider (LHC). The expected signatures, as well as the experimental sensitivities and the possible strategies for confirming the Little Higgs origin of new particles, are discussed. Finally, several other related topics are briefly reviewed, including the ultraviolet completions of Little Higgs models, as well as the implications of these models for flavor physics and cosmology.Comment: 60 pages, 17 figures. Invited review article submitted to Progress of Particle and Nuclear Physic

    Out-of-plane interface dipoles and anti-hysteresis in graphene-strontium titanate hybrid transistor

    Get PDF
    The out-of-plane electric polarization at the surface of SrTiO3 (STO), an archetypal perovskite oxide, may stabilize new electronic states and/or host novel device functionality. This is particularly significant in proximity to atomically thin membranes, such as graphene, although a quantitative understanding of the polarization across graphene-STO interface remains experimentally elusive. Here, we report direct observation and measurement of a large intrinsic out-of-plane polarization at the interface of singlelayer graphene and TiO2-terminated STO (100) crystal. Using a unique temperature dependence of anti-hysteretic gate-transfer characteristics in dual-gated graphene-on-STO field-effect transistors, we estimate the polarization to be as large as approximate to 12 mu Ccm(-2), which is also supported by the density functional theory calculations and low-frequency noise measurements. The anti-hysteretic transfer characteristics is quantitatively shown to arise from an interplay of band bending at the STO surface and electrostatic potential due to interface polarization, which may be a generic feature in hybrid electronic devices from two-dimensional materials and perovskite oxides
    corecore